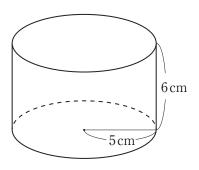
令和6年度

群馬県公立高等学校

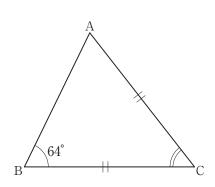
入学者選抜学力検査問題

数 学

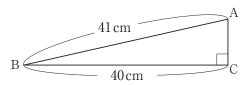

- 1 検査開始の指示があるまで、問題用紙を開かないこと。
- 2 解答は、解答用紙に記入すること。
- 3 検査終了の指示があったら、直ちに筆記用具を置き、問題用紙と解答用紙の 両方を机の上に置くこと。
- 4 問題は、1ページから10ページまであります。

- 1 次の(1)~(9)の問いに答えなさい。
- (1) 次の①~③の計算をしなさい。
- ① 7 + (-2) ② (3x+7) (x-1) ③ $(3a^2b 2ab) \div ab$

(2) $x^2-5x-24$ を因数分解しなさい。


- (3) 平方根について述べた次のア〜エのうち、正しく述べているものをすべて選び、記号で答え なさい。
 - ア $\sqrt{0.001} = 0.1$ である。
 - イ $\sqrt{10}$ を2乗すると, 10 になる。
 - ウ 3の平方根は,9と-9である。
 - エ $3\sqrt{11}$ は、10よりも値が小さい。

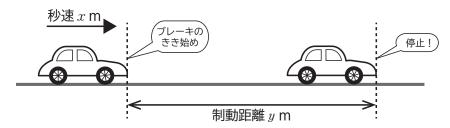
(4) 右の図の立体は、底面の半径が 5 cm、高さが 6 cm の円柱である。この円柱の表面積を求めなさい。 ただし、円周率はπとする。

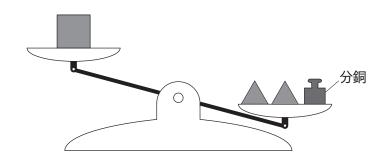


(5) 2次方程式 $x^2+5x+5=0$ を解きなさい。

(6) 右の図の三角形 ABC は、CA = CBの二等辺三角形である。 \angle ABC = 64 $^\circ$ のとき、 \angle ACBの大きさを求めなさい。

(7) 右の図の三角形 ABC は、∠ ACB = 90°の直角三角形である。AB = 41 cm、BC = 40 cmのとき、ACの長さを求めなさい。


(8) 大きさの異なる2つのさいころを同時に投げて、大きいさいころの目が3以下のときは2つのさいころの目の和をXとし、大きいさいころの目が4以上のときは2つのさいころの目の積をXとする。このとき、Xが5の倍数となる確率を求めなさい。



(9) 走行中の自動車がブレーキをかけたとき,ブレーキがきき始めてから自動車が完全に停止するまでに進んだ距離のことを制動距離という。一般に,秒速xmで走っている自動車の制動距離をymとすると,yはxの2乗に比例することが知られている。

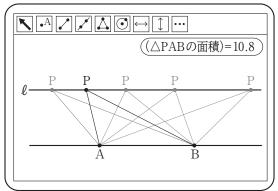
この関係が成り立つ自動車Aについて調べたところ、秒速10mで走っているときの制動距離が10mであった。この自動車Aが、秒速30mで走っているときの制動距離を求めなさい。

- **2** 四角型,三角型,丸型,星型の4種類の積み木があり,積み木1個当たりの重さは,種類ごとに それぞれ同じ重さであるとする。これらの積み木と分銅をてんびんに乗せて,積み木の重さを調べ た。次の(1),(2)の問いに答えなさい。
 - (1) てんびんの左の皿に四角型の積み木1個を乗せ、右の皿に三角型の積み木2個と50gの分銅1個を乗せたところ、次の図のようにてんびんが傾いた。四角型の積み木1個の重さをag、三角型の積み木1個の重さをbgとするとき、このてんびんの様子から分かる、重さについての大小関係を不等式で表しなさい。

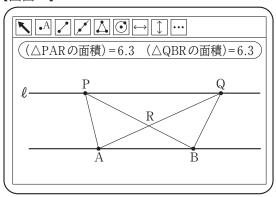
(2) てんびんの左の皿に丸型の積み木3個を乗せ、右の皿に星型の積み木2個を乗せたところ、 てんびんがつり合った。また、左の皿に丸型の積み木2個と20gの分銅4個を乗せ、右の皿に星型 の積み木3個を乗せたときも、てんびんがつり合った。このとき、丸型の積み木1個の重さと、 星型の積み木1個の重さを、それぞれ求めなさい。

ただし、解答用紙の(解)には、答えを求める過程を書くこと。

3 降和さんと亜衣さんは、数学の授業で、コンピュータを使いながら図形の性質について考えて いる。会話文を読んで、後の(1)、(2)の問いに答えなさい。


先生:コンピュータを使うと、自分で描いた 【画面 I】 図形の面積を調べることができます よ。いろいろ試してみましょう。

隆和さん: 2点A, Bと, 直線ABに平行な 直線 ℓ上の点Pの3点で作る三角形 を調べたら、【画面 I 】のように、 ℓ上で点Pを動かしても、三角形の 面積が変わりませんでした。


先生:いいところに目を付けましたね。 他にも気付くことはないですか。

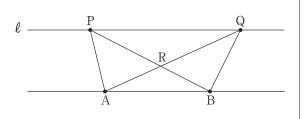
亜衣さん:私は ℓ上に点 Pと点 Q の 2 点を とってみました。そして、PBとQA の交点をRとすると、【画面Ⅱ】の ように、三角形PARと三角形QBR の面積が同じになりました。

先生:では、コンピュータを使って見つけた ことがらを, 実際に証明して確かめ てみましょう。

【画面Ⅱ】

(1) 【画面Ⅱ】に示された三角形PARと三角形QBRの面積が等しいことを、次のように証明した。 X には当てはまる記号を、 Y には当てはまることばを入れなさい。また、 に 証明の続きを書き,この証明を完成させなさい。

なお、三角形の面積を表す際に、例えば、三角形 ABC の面積の大きさを△ ABC と表したり、 三角形 ABCと三角形 DEFの面積が等しいことを \triangle ABC = \triangle DEFと表したりしてよいものとする。


- 証 明 -

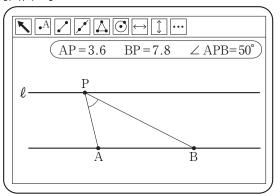
三角形PABと三角形 QABについて、 共通する辺 X を底辺と考えると,

 $\ell /\!\!/ AB \downarrow 0$ Y といえるので、

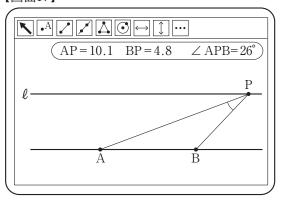
2つの三角形の面積は等しい。

よって、 $\triangle PAB = \triangle QAB$ ……①

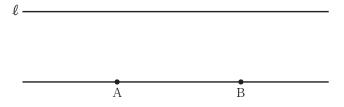
先生:今度は,角度について調べてみま しょう。


亜衣さん:【画面皿】や【画面IV】のように, 点Pをℓ上で動かしてみると, 点P の位置によって, ∠APBの大きさが 変わることが分かりました。

隆和さん:点Pをいろいろ動かしてみましたが、∠APBの大きさが最も大きいのは、PA = PBのときのようです。この点Pは、コンパスと定規で実際に作図できそうですね。

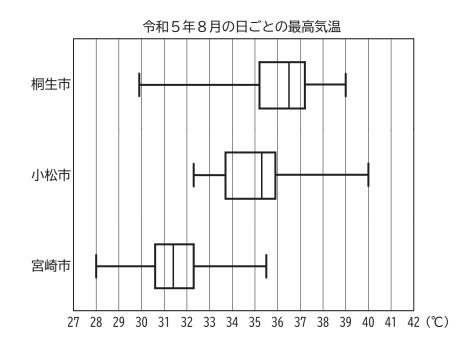

亜衣さん:そうですね。直線ℓ上には,この 点P以外にも,コンパスと定規で 作図できる点がありそうですね。

先生:PA = PBとなる点Pをもとにして考えると、 $\angle ACB = \frac{1}{2} \angle APB$ となるような直線 ℓ 上の点Cも実際に作図できますよ。点Pや点Cをどうやって作図すればよいか、みんなで考えてみましょう。

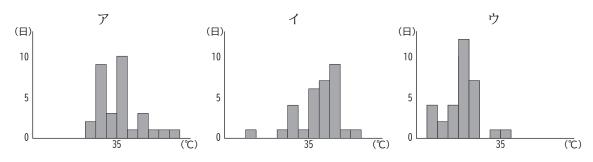

【画面皿】

【画面IV】

(2) 次の図は、2点A, Bと、直線ABに平行な直線 ℓ を示したものである。後の①、②の問いに答えなさい。



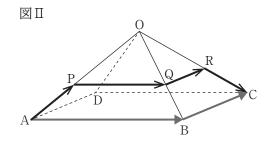
① 図に、PA = PBとなる直線 ℓ 上の点Pと、その点Pに対して \angle $ACB = \frac{1}{2}$ \angle APBとなるような直線 ℓ 上の点C を、コンパスと定規を用いて作図しなさい。


ただし,条件を満たす点Cが2つ以上ある場合はそのすべての点を作図し,作図したすべて の点をCと表すこと。また,作図に用いた線は消さないこと。

② ①のような作図によって点Cをとったことで、なぜ \angle ACB = $\frac{1}{2}$ \angle APBであるといえるのか、その理由を説明しなさい。

4 沙知さんは、昨年の夏、自分が住んでいる群馬県桐生市が記録的な暑さだったことから、桐生市のほか、昨年8月に40.0℃を記録した石川県小松市と、1年中温暖なことで知られる宮崎県宮崎市の3つの市について、令和5年8月の日ごとの最高気温をそれぞれ31日分調べて比較することにした。次の図は、これらのデータを箱ひげ図にまとめたものである。後の(1)~(3)の問いに答えなさい。

- (1) 沙知さんがまとめた箱ひげ図をもとに、次のア〜ウを、値の小さい順に左から並べて書きなさい。
 - ア 桐生市のデータの第3四分位数
 - イ 小松市のデータの第1四分位数
 - ウ 宮崎市のデータの最大値
- (2) 沙知さんは、3つの市のデータの分布の様子を詳しく比較するため、箱ひげ図に加えてヒストグラムも作成することにした。次のア~ウは、令和5年8月の桐生市、小松市、宮崎市の最高気温のデータをもとに、階級の幅を1.0℃として作成したヒストグラムである。桐生市に当たるものをア~ウから選び、記号で答えなさい。



- (3) 次のア〜エは、沙知さんが、桐生市、小松市、宮崎市のデータの箱ひげ図を比較して述べたものである。ア〜エのうち、正しく述べているものをすべて選び、記号で答えなさい。
 - ア 3つの市のうち、データの範囲が最も大きいのは、桐生市であることが分かる。
 - イ 3つの市のうち、箱ひげ図の箱の部分が最も右側に位置しているのは桐生市であるため、 桐生市のデータの四分位範囲が最も大きいことが分かる。
 - ウ 桐生市と小松市について、箱ひげ図のひげの部分の長さや位置を比較することで、桐生市 よりも小松市の方が、最高気温が 36.0 ℃以上の日が多かったことが分かる。
 - エ 宮崎市のデータの最大値よりも桐生市のデータの中央値の方が値が大きいため、桐生市の 最高気温が宮崎市の最高気温よりも高かった日が、31日のうち16日以上あったことが分かる。

5 図 I のように、山の麓のある地点にいる人が、別の麓にある目的地まで歩いて移動する場合、山の麓に沿って歩くよりも、山頂の方に少し登ってから目的地を目指して歩いた方が、早くたどり着けることがあるという。

この話を聞いた真一さんは、このことを調べるために、図 Π のような四角すいを用いたモデルで考えることにした。この四角すいは、底面が一辺 $4000\,\mathrm{m}$ の正方形 ABCD であり、 $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=3000\,\mathrm{m}$ とする。図 Π のように、山の麓に沿って目的地を目指す場合は、 $\mathrm{A}\to\mathrm{B}\to\mathrm{C}$ という経路で歩くこととし、山頂の方に少し登ってから目的地を目指す場合は、辺 OA 、辺 OB 、辺 OC 上に、 $\mathrm{OP}=\mathrm{OQ}=\mathrm{OR}$ となる点 P 、点 Q 、点 R をそれぞれとり、 $\mathrm{A}\to\mathrm{P}\to\mathrm{Q}\to\mathrm{R}\to\mathrm{C}$ という経路で歩くこととする。次の(1)、(2)の問いに答えなさい。

- (1) 次の①~③の問いに答えなさい。
 - ① $A \rightarrow P \rightarrow Q \rightarrow R \rightarrow C$ という経路で目的地を目指す場合,最初に登る距離 AP を1500mとしたときに歩く距離の合計は何mとなるか,求めなさい。
 - ② 最初に登る距離 $AP \, \epsilon \, x \, m$, $A \to P \to Q \to R \to C$ という経路で歩く距離の合計 $\epsilon \, y \, m$ とする。 このとき、 $y \, \epsilon \, x \, o$ 式で表しなさい。 ただし、0 < x < 3000 とする。
 - ③ $A \rightarrow P \rightarrow Q \rightarrow R \rightarrow C$ という経路で歩く距離の合計が、 $A \rightarrow B \rightarrow C$ という経路で歩く距離の合計の90%となるようにするには、最初に登る距離 APを何mにすればよいか、求めなさい。

(2) 真一さんは、山を登るときや下るときに歩く速さが変わることを考慮して、このモデルについて考え直すことにした。

 $A \to P \to Q \to R \to C$ という経路で歩いて目的地を目指す場合,山を登る $A \to P$ の区間では, $A \to B \to C$ という経路で歩くときの0.6 倍の速さになり, $P \to Q \to R$ の区間では, $A \to B \to C$ という経路で歩くときと同じ速さに,また,山を下る $R \to C$ の区間では, $A \to B \to C$ という経路で歩くときの1.5 倍の速さになると仮定する。

このとき, $A \to P \to Q \to R \to C$ という経路で歩く場合の移動時間が, $A \to B \to C$ という経路で歩く場合の移動時間の90%となるようにするには,最初に登る距離APを何mにすればよいか,求めなさい。

ただし、 $A \rightarrow B \rightarrow C$ という経路で歩くときの速さは、一定であるとする。

